What You Need to Know About Emissions Markets

Joe Bryson, US EPA bryson.joe@epa.gov

Panel: Green Power and Emissions Markets: A Nexus?

9th National Green Power Marketing Conference Albany, NY October 5, 2005

Topics

- U.S. Emissions Markets
- Cap & Trade Basics
- Implications for Green Power
- Status of Key U.S. Emissions Markets
- Green Power Claims Under Cap & Trade
- Allowance Allocations
- Value of Emissions Allowances
- Challenges of REC Definition
- Air Regulator's Perspective

U.S. Emissions Markets

- Existing examples
 - SO2 Trading (US EPA Acid Rain Program)
 - NOx Budget Trading (US EPA "SIP" Call)
 - Emission Reduction Credits (ERCs)
 - Houston-Galveston Area (HGA) NOx
 - RECLAIM (Southern California)
- Proposed programs
 - US EPA Clean Air Interstate Rule (NOx & SO2)
 - US EPA Mercury Rule (Hg)
 - Regional Greenhouse Gas Initiative (RGGI)

Cap & Trade Basics

Goal: Certain and cost-effective emissions reductions

Regulator

- Sets an emission cap (annual/seasonal) for the sector (electric generators) for particular pollutant (e.g., SO2, NOx, Hg, CO2)
- Distributes allowances that permit emission of specified amount (usually one ton) of capped pollutant in particular year/season
- Establishes central entity/system to track allowances: owner, vintage (year), transfers, etc.
- Monitors & enforces compliance of emitters with requirements to
 - Measure & report emissions and
 - Hold allowances equal to actual emissions at end of year/season

Emitters meet requirements by

- Reducing emissions (adding controls, fuel switching, reducing operations) and/or
- Buying or selling allowances

Implications of Cap & Trade

- Individual emitters do not have to meet any specific emission target
- Emitters with low control costs will "over control" and sell allowances to emitters with high control costs
- The market will operate such that total sector reductions are achieved at lower overall cost than with "command and control" approach
- Emitters will face significant increases in capital and operating costs and this will tend to raise electricity market prices, providing some incremental relative price advantage to non-emitting generators

What This Means for Green Power

- Good news for cleaner air:
 - Emissions will not exceed the cap
- Inconvenient news for Green Power:
 - Emissions will not be reduced below the cap ... even if new non-emitting generation comes on line
 - The only way to reduce emissions of a capped pollutant is to retire allowances
 - Why?
 - Because excess allowances resulting from displaced generation from emitting facilities will be sold to & used by another emitter

What This Means for Green Power

[Continued]

- Good news for Green Power:
 - Renewable Energy becomes relatively more costcompetitive and should require less of a premium
 - Under a significant CO2 cap this benefit could be on the order of half a cent or more per kW-Hr
 - Full disclosure about this relative benefit to RE
 - It's not large for NOx (~ one or two 1/10th of a cent per kW-Hr)
 - Can be less depending upon how allowances are allocated
- Other news for Green Power:
 - New non-emitting generation will:
 - Lower allowance prices and reduce need for emission controls
 - Thus, RE can accurately claim what exactly?

Bottom Line

- Increased renewable generation alone does <u>not</u> reduce capped emissions
- To reduce emissions, <u>allowances must be retired</u>
- However, even if emissions are not reduced, increased renewable generation does make "a contribution" (though, hard to describe) to reducing emissions to the cap level
- RE benefits from any Cap & Trade because it adds costs to fossil generation making RE relatively more cost-competitive

Key U.S. Emissions Markets

Existing

- SO2 Trading Program
 - National, Annual
- NOx Budget Trading Program
 - Regional (19+ eastern states), Seasonal

Under Construction

- Clean Air Interstate Rule (CAIR)
 - NOx, ~29 eastern states, Annual
 - SO2, National, Annual, Tightens cap in Eastern US
- Regional Greenhouse Gas Initiative
 - CO2, ~10 northeastern states, Annual
- Mercury Rule
 - Hg, National. Annual

Anticipated?

Cap & Trade Trends

- Increasing use of Cap & Trade approaches to reduce air emissions from electric generation and caps are getting tighter and expanding geographically
 - 48 states have at least one capped pollutant (SO2) and
 - many states may have three or four capped pollutants within the next five to ten years
 - NOx and SO2 caps have tightened
- Increasing variation from state-to-state, region-toregion
 - Newer programs under the CAA (NOx SIP Call, CAIR and Hg Rule) give states the authority to determine their own allowance allocation approach
 - Increasing use and variety of allocation approaches different from original SO2 approach (permanent, input-based)

GP Claims Under Cap & Trade

If allowances are retired

- There is a reduction somewhere in the capped region
- "Cleaning the air & reducing 1.5 lbs NOx/mW-Hr."

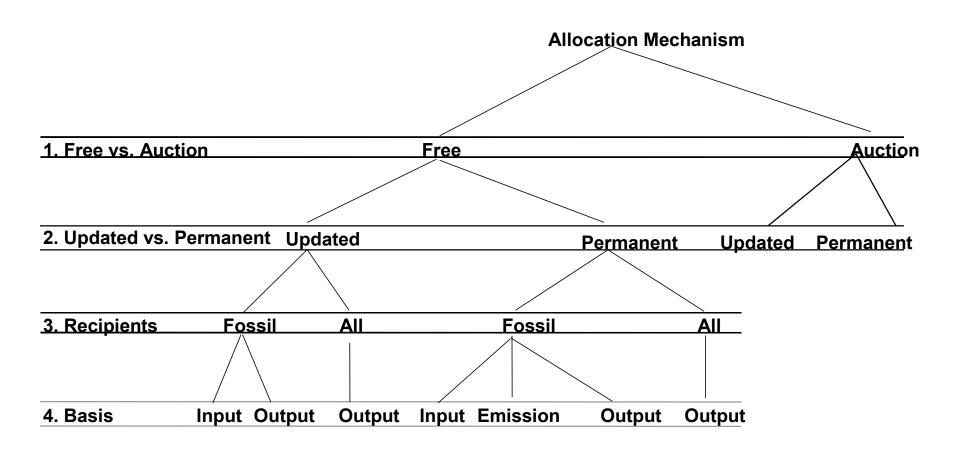
If allowances are not retired

- There is not a reduction in the capped region
- "Emissions free source in region with average emissions of 1.5 lbs NOx/mW-Hr"
- True regardless of whether allowances are given for free or bought

One Way to Look at The Choice

Scenario

- Wind project owner selling RECs to GP Marketer
- Wants to get \$10/mW-Hr to meet financial projections
- Receiving NOx allowances under annual NOx trading rule worth \$1.5/mW-Hr


Option #1

- Sell NOx allowances to emitter for \$1.5/mW-Hr
- Sell RECs for \$8.5/mW-Hr
- Market RECs as "emissions free source in region w/ average emissions of 1.5 lbs NOx/mW-Hr"

Option #2

- Retire NOx allowances
- Sell RECs for \$10/mW-Hr
- Market RECs as "cleaning the air & reducing 1.5 lbs NOx/mW-Hr

Overview of Allocation Options

Evaluating Effect of Allocation Approach on Renewable Energy

- Must consider impact on competitor's costs, market prices, and new/old RE
- Some analysis indicates that <u>new</u> RE benefits ...
 - Most under auction
 - Some, but less, under updating allocations to all generation
 - Less still under permanent allocations or updating w/o
 RE
 - Always more than if no cap
- Complex and difficult to evaluate

Potential Value of Emission Allowances

Emission	Allocation Rate** (lbs/MW-Hr)	Allowance Price** (\$/ton)	Value (\$/MW-Hr)
NOX	1.5	1,500	1.13
SO2	3	500	0.75
Mercury**	0.00816	40,000	0.33
CO2	1400	1 - 10	0.70 - 7.00
Total			2.91 - 9.21

^{**}For mercury only, allocation rate is in lbs/GW-Hr and allowance price is in \$/lb.

Challenges of Common REC Definition In Cap & Trade World

"the bundle of non-energy attributes associated with generation of electricity at a renewable energy facility"

- In existing markets, emissions are only reduced when allowances are retired and in many cases allowances are not allocated to RE
- In anticipated markets, claims to emissions reductions are uncertain due to the indirect nature of RE emissions benefits and likely claim of same reduction by fossil generators

Air Regulator's Perspective on Cap & Trade

- Air quality programs should internalize (\$) air benefits of RE, leading to least cost strategies to objectives
 - Alternatively, internalize (\$) air <u>impacts</u> of other fuels
- Air quality programs generally do <u>not</u> seek to
 - Maximize benefit to RE
 - Compensate for subsidies to other fuels or for RE non-air benefits
 - Address broader energy policy goals (e.g., fuel diversity, imports)
- Objective is achievement of the cap level of emissions
 - with certainty
 - at lowest total cost
- Interested in design issues affecting RE to the extent they can lower total compliance costs